skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Weixiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Social networks form a major parts of people’s lives, and individuals often make important life decisions based on information that spreads through these networks. For this reason, it is important to know whether individuals from different protected groups have equal access to information flowing through a network. In this article, we define the Information Unfairness (IUF) metric, which quantifies inequality in access to information across protected groups. We then introduce MinIUF , an algorithm for reducing inequalities in information flow by adding edges to the network. Finally, we provide an in-depth analysis of information flow with respect to an attribute of interest, such as gender, across different types of networks to evaluate whether the structure of these networks allows groups to equally access information flowing in the network. Moreover, we investigate the causes of unfairness in such networks and how it can be improved. 
    more » « less
  2. Recommendation systems have been used in many domains, and in recent years, ethical problems associated with such systems have gained serious attention. The problem of unfairness in friendship or link recommendation systems in social networks has begun attracting attention, as such unfairness can cause problems like segmentation and echo chambers. One challenge in this problem is that there are many fairness metrics for networks, and existing methods only consider the improvement of a single specific fairness indicator. In this work, we model the fair link prediction problem as a multi-armed bandit problem. We propose FairLink, a multi-armed bandit based framework that predicts new edges that are both accurate and well-behaved with respect to a fairness property of choice. This method allows the user to specify the desired fairness metric. Experiments on five real-world datasets show that FairLink can achieve a significant fairness improvement as compared to a standard recommendation algorithm, with only a small reduction in accuracy. 
    more » « less